

FINAL TEST
ALL RIGHTS RESERVED © 2001
Add these roman numerals without converting them to Arabic numerals.

1) MMDCLXXXIV + CCLXXVI

2) CMLXI + CDXXXVII

Add these base two numbers and give the answers in base two.
3) ${100110_{t w o}}^{\text {tw }}$ $+{110011_{t w o}}$
4) $\quad 10110001_{\text {two }}$ $+\underline{11000101}_{t w o}$
5) $1000111_{\text {two }}$ $+\quad 11101_{t w o}$

Subtract the following in base two.
6) $\quad 1100101_{\text {two }}$
$-1^{1001100}$ two
7) $\quad 1011101_{\text {two }}$
$-\quad 1001010{ }^{\text {two }}$
8) $\quad 1110101_{\text {two }}$
$-\quad 111001{ }_{t w o}$

Multiply the following base two numbers.
9)

110111
$\times \quad 101_{\text {two }}$

$10)$	101110
$\mathrm{x} \quad 1101_{t w o}$	

$\begin{array}{cc}\text { 11) } & 1011010 \\ \mathrm{x} & 111_{\text {two }}\end{array}$

Divide the following base two numbers.

$$
\text { 12) } 1 0 0 0 0 0 \longdiv { 1 0 0 1 0 0 0 0 0 _ { \mathrm { two } } } \quad \text { 13) } 1 0 1 0 \longdiv { 1 0 1 1 0 1 0 0 0 _ { \mathrm { two } } }
$$

Page 2

Fill in the blanks to make the equations true.
14) $64_{\text {ten }}=$ \qquad 15) $123_{\text {eight }}=$ \qquad
Add the following base eight numbers.
16) 5471
$+4432_{\text {Eight }}$
17) 2623
$+5255_{\text {Eight }}$
18) 4716
$+5433_{\text {Eight }}$

Subtract the following in base eight.
19) 3275
20) 5471
21) 5433
-- $2626_{\text {Eight }}$
-- $4432_{\text {Eight }}$
$-\mathbf{- 4 7 1 6 ~}_{\text {Eight }}$

Change problems 19-21 to base ten and subtract
19)
20)
21)

Multiply the following in base eight.

$22)$	2375
$\mathrm{x} \quad 76_{\text {Eight }}$	

$23)$	1463
$\mathrm{X} \quad 136_{\text {Eight }}$	

$24)$
$\times \quad 6543$
$\times \quad 47$

25) $64_{\text {ten }}=$ \qquad sixteen
26) $1 f_{\text {sixteen }}=$ \qquad

Page 3
Add the following in base sixteen.

29) $2457_{\text {sixteen }}$
+6678 sixteen

30) License plates often have both letters and numerals like the pictures above. By using both letters and numerals, the states are able to use fewer figures to create more unique combinations for their license plates. If a state used only Hindu-A rabic numerals, how many unique license plates could be produced from six figures? How many unique license plates can be produced using three letters followed by three numerals like the example at the top left? \qquad How many unique license plates can be produced using three numerals followed by three letters like the example at the top right? How many unique license plates can be produced using six letters? How many unique license plates can be produced using any combination of six letters and/ or numerals? \qquad

Describe the solution in set notation.
31) $\{x \mid x \geq 12\} \cap\{x \mid x \leq 15\}$
32) $\{x \mid x>50\} \cup\{x \mid x>20\}$

Fill in the missing information.
33)

